3.56 \(\int \frac{1}{(d+e x^n) (a+c x^{2 n})^3} \, dx\)

Optimal. Leaf size=582 \[ -\frac{c e (1-3 n) (1-n) x^{n+1} \, _2F_1\left (1,\frac{n+1}{2 n};\frac{1}{2} \left (3+\frac{1}{n}\right );-\frac{c x^{2 n}}{a}\right )}{8 a^3 n^2 (n+1) \left (a e^2+c d^2\right )}+\frac{c d (1-4 n) (1-2 n) x \, _2F_1\left (1,\frac{1}{2 n};\frac{1}{2} \left (2+\frac{1}{n}\right );-\frac{c x^{2 n}}{a}\right )}{8 a^3 n^2 \left (a e^2+c d^2\right )}+\frac{c e^3 (1-n) x^{n+1} \, _2F_1\left (1,\frac{n+1}{2 n};\frac{1}{2} \left (3+\frac{1}{n}\right );-\frac{c x^{2 n}}{a}\right )}{2 a^2 n (n+1) \left (a e^2+c d^2\right )^2}-\frac{c d e^2 (1-2 n) x \, _2F_1\left (1,\frac{1}{2 n};\frac{1}{2} \left (2+\frac{1}{n}\right );-\frac{c x^{2 n}}{a}\right )}{2 a^2 n \left (a e^2+c d^2\right )^2}-\frac{c x \left (d (1-4 n)-e (1-3 n) x^n\right )}{8 a^2 n^2 \left (a e^2+c d^2\right ) \left (a+c x^{2 n}\right )}-\frac{c e^5 x^{n+1} \, _2F_1\left (1,\frac{n+1}{2 n};\frac{1}{2} \left (3+\frac{1}{n}\right );-\frac{c x^{2 n}}{a}\right )}{a (n+1) \left (a e^2+c d^2\right )^3}+\frac{c d e^4 x \, _2F_1\left (1,\frac{1}{2 n};\frac{1}{2} \left (2+\frac{1}{n}\right );-\frac{c x^{2 n}}{a}\right )}{a \left (a e^2+c d^2\right )^3}+\frac{e^6 x \, _2F_1\left (1,\frac{1}{n};1+\frac{1}{n};-\frac{e x^n}{d}\right )}{d \left (a e^2+c d^2\right )^3}+\frac{c e^2 x \left (d-e x^n\right )}{2 a n \left (a e^2+c d^2\right )^2 \left (a+c x^{2 n}\right )}+\frac{c x \left (d-e x^n\right )}{4 a n \left (a e^2+c d^2\right ) \left (a+c x^{2 n}\right )^2} \]

[Out]

(c*x*(d - e*x^n))/(4*a*(c*d^2 + a*e^2)*n*(a + c*x^(2*n))^2) + (c*e^2*x*(d - e*x^n))/(2*a*(c*d^2 + a*e^2)^2*n*(
a + c*x^(2*n))) - (c*x*(d*(1 - 4*n) - e*(1 - 3*n)*x^n))/(8*a^2*(c*d^2 + a*e^2)*n^2*(a + c*x^(2*n))) + (c*d*e^4
*x*Hypergeometric2F1[1, 1/(2*n), (2 + n^(-1))/2, -((c*x^(2*n))/a)])/(a*(c*d^2 + a*e^2)^3) + (c*d*(1 - 4*n)*(1
- 2*n)*x*Hypergeometric2F1[1, 1/(2*n), (2 + n^(-1))/2, -((c*x^(2*n))/a)])/(8*a^3*(c*d^2 + a*e^2)*n^2) - (c*d*e
^2*(1 - 2*n)*x*Hypergeometric2F1[1, 1/(2*n), (2 + n^(-1))/2, -((c*x^(2*n))/a)])/(2*a^2*(c*d^2 + a*e^2)^2*n) +
(e^6*x*Hypergeometric2F1[1, n^(-1), 1 + n^(-1), -((e*x^n)/d)])/(d*(c*d^2 + a*e^2)^3) - (c*e^5*x^(1 + n)*Hyperg
eometric2F1[1, (1 + n)/(2*n), (3 + n^(-1))/2, -((c*x^(2*n))/a)])/(a*(c*d^2 + a*e^2)^3*(1 + n)) - (c*e*(1 - 3*n
)*(1 - n)*x^(1 + n)*Hypergeometric2F1[1, (1 + n)/(2*n), (3 + n^(-1))/2, -((c*x^(2*n))/a)])/(8*a^3*(c*d^2 + a*e
^2)*n^2*(1 + n)) + (c*e^3*(1 - n)*x^(1 + n)*Hypergeometric2F1[1, (1 + n)/(2*n), (3 + n^(-1))/2, -((c*x^(2*n))/
a)])/(2*a^2*(c*d^2 + a*e^2)^2*n*(1 + n))

________________________________________________________________________________________

Rubi [A]  time = 0.416065, antiderivative size = 582, normalized size of antiderivative = 1., number of steps used = 15, number of rules used = 5, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.238, Rules used = {1437, 245, 1431, 1418, 364} \[ -\frac{c e (1-3 n) (1-n) x^{n+1} \, _2F_1\left (1,\frac{n+1}{2 n};\frac{1}{2} \left (3+\frac{1}{n}\right );-\frac{c x^{2 n}}{a}\right )}{8 a^3 n^2 (n+1) \left (a e^2+c d^2\right )}+\frac{c d (1-4 n) (1-2 n) x \, _2F_1\left (1,\frac{1}{2 n};\frac{1}{2} \left (2+\frac{1}{n}\right );-\frac{c x^{2 n}}{a}\right )}{8 a^3 n^2 \left (a e^2+c d^2\right )}+\frac{c e^3 (1-n) x^{n+1} \, _2F_1\left (1,\frac{n+1}{2 n};\frac{1}{2} \left (3+\frac{1}{n}\right );-\frac{c x^{2 n}}{a}\right )}{2 a^2 n (n+1) \left (a e^2+c d^2\right )^2}-\frac{c d e^2 (1-2 n) x \, _2F_1\left (1,\frac{1}{2 n};\frac{1}{2} \left (2+\frac{1}{n}\right );-\frac{c x^{2 n}}{a}\right )}{2 a^2 n \left (a e^2+c d^2\right )^2}-\frac{c x \left (d (1-4 n)-e (1-3 n) x^n\right )}{8 a^2 n^2 \left (a e^2+c d^2\right ) \left (a+c x^{2 n}\right )}-\frac{c e^5 x^{n+1} \, _2F_1\left (1,\frac{n+1}{2 n};\frac{1}{2} \left (3+\frac{1}{n}\right );-\frac{c x^{2 n}}{a}\right )}{a (n+1) \left (a e^2+c d^2\right )^3}+\frac{c d e^4 x \, _2F_1\left (1,\frac{1}{2 n};\frac{1}{2} \left (2+\frac{1}{n}\right );-\frac{c x^{2 n}}{a}\right )}{a \left (a e^2+c d^2\right )^3}+\frac{e^6 x \, _2F_1\left (1,\frac{1}{n};1+\frac{1}{n};-\frac{e x^n}{d}\right )}{d \left (a e^2+c d^2\right )^3}+\frac{c e^2 x \left (d-e x^n\right )}{2 a n \left (a e^2+c d^2\right )^2 \left (a+c x^{2 n}\right )}+\frac{c x \left (d-e x^n\right )}{4 a n \left (a e^2+c d^2\right ) \left (a+c x^{2 n}\right )^2} \]

Antiderivative was successfully verified.

[In]

Int[1/((d + e*x^n)*(a + c*x^(2*n))^3),x]

[Out]

(c*x*(d - e*x^n))/(4*a*(c*d^2 + a*e^2)*n*(a + c*x^(2*n))^2) + (c*e^2*x*(d - e*x^n))/(2*a*(c*d^2 + a*e^2)^2*n*(
a + c*x^(2*n))) - (c*x*(d*(1 - 4*n) - e*(1 - 3*n)*x^n))/(8*a^2*(c*d^2 + a*e^2)*n^2*(a + c*x^(2*n))) + (c*d*e^4
*x*Hypergeometric2F1[1, 1/(2*n), (2 + n^(-1))/2, -((c*x^(2*n))/a)])/(a*(c*d^2 + a*e^2)^3) + (c*d*(1 - 4*n)*(1
- 2*n)*x*Hypergeometric2F1[1, 1/(2*n), (2 + n^(-1))/2, -((c*x^(2*n))/a)])/(8*a^3*(c*d^2 + a*e^2)*n^2) - (c*d*e
^2*(1 - 2*n)*x*Hypergeometric2F1[1, 1/(2*n), (2 + n^(-1))/2, -((c*x^(2*n))/a)])/(2*a^2*(c*d^2 + a*e^2)^2*n) +
(e^6*x*Hypergeometric2F1[1, n^(-1), 1 + n^(-1), -((e*x^n)/d)])/(d*(c*d^2 + a*e^2)^3) - (c*e^5*x^(1 + n)*Hyperg
eometric2F1[1, (1 + n)/(2*n), (3 + n^(-1))/2, -((c*x^(2*n))/a)])/(a*(c*d^2 + a*e^2)^3*(1 + n)) - (c*e*(1 - 3*n
)*(1 - n)*x^(1 + n)*Hypergeometric2F1[1, (1 + n)/(2*n), (3 + n^(-1))/2, -((c*x^(2*n))/a)])/(8*a^3*(c*d^2 + a*e
^2)*n^2*(1 + n)) + (c*e^3*(1 - n)*x^(1 + n)*Hypergeometric2F1[1, (1 + n)/(2*n), (3 + n^(-1))/2, -((c*x^(2*n))/
a)])/(2*a^2*(c*d^2 + a*e^2)^2*n*(1 + n))

Rule 1437

Int[((d_) + (e_.)*(x_)^(n_))^(q_)*((a_) + (c_.)*(x_)^(n2_))^(p_), x_Symbol] :> Int[ExpandIntegrand[(d + e*x^n)
^q*(a + c*x^(2*n))^p, x], x] /; FreeQ[{a, c, d, e, n, p, q}, x] && EqQ[n2, 2*n] && NeQ[c*d^2 + a*e^2, 0] && ((
IntegersQ[p, q] &&  !IntegerQ[n]) || IGtQ[p, 0] || (IGtQ[q, 0] &&  !IntegerQ[n]))

Rule 245

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[a^p*x*Hypergeometric2F1[-p, 1/n, 1/n + 1, -((b*x^n)/a)],
x] /; FreeQ[{a, b, n, p}, x] &&  !IGtQ[p, 0] &&  !IntegerQ[1/n] &&  !ILtQ[Simplify[1/n + p], 0] && (IntegerQ[p
] || GtQ[a, 0])

Rule 1431

Int[((d_) + (e_.)*(x_)^(n_))*((a_) + (c_.)*(x_)^(n2_))^(p_), x_Symbol] :> -Simp[(x*(d + e*x^n)*(a + c*x^(2*n))
^(p + 1))/(2*a*n*(p + 1)), x] + Dist[1/(2*a*n*(p + 1)), Int[(d*(2*n*p + 2*n + 1) + e*(2*n*p + 3*n + 1)*x^n)*(a
 + c*x^(2*n))^(p + 1), x], x] /; FreeQ[{a, c, d, e, n}, x] && EqQ[n2, 2*n] && ILtQ[p, -1]

Rule 1418

Int[((d_) + (e_.)*(x_)^(n_))/((a_) + (c_.)*(x_)^(n2_)), x_Symbol] :> Dist[d, Int[1/(a + c*x^(2*n)), x], x] + D
ist[e, Int[x^n/(a + c*x^(2*n)), x], x] /; FreeQ[{a, c, d, e, n}, x] && EqQ[n2, 2*n] && NeQ[c*d^2 + a*e^2, 0] &
& (PosQ[a*c] ||  !IntegerQ[n])

Rule 364

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a^p*(c*x)^(m + 1)*Hypergeometric2F1[-
p, (m + 1)/n, (m + 1)/n + 1, -((b*x^n)/a)])/(c*(m + 1)), x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[p, 0] &&
 (ILtQ[p, 0] || GtQ[a, 0])

Rubi steps

\begin{align*} \int \frac{1}{\left (d+e x^n\right ) \left (a+c x^{2 n}\right )^3} \, dx &=\int \left (\frac{e^6}{\left (c d^2+a e^2\right )^3 \left (d+e x^n\right )}-\frac{c \left (-d+e x^n\right )}{\left (c d^2+a e^2\right ) \left (a+c x^{2 n}\right )^3}-\frac{c e^2 \left (-d+e x^n\right )}{\left (c d^2+a e^2\right )^2 \left (a+c x^{2 n}\right )^2}-\frac{c e^4 \left (-d+e x^n\right )}{\left (c d^2+a e^2\right )^3 \left (a+c x^{2 n}\right )}\right ) \, dx\\ &=-\frac{\left (c e^4\right ) \int \frac{-d+e x^n}{a+c x^{2 n}} \, dx}{\left (c d^2+a e^2\right )^3}+\frac{e^6 \int \frac{1}{d+e x^n} \, dx}{\left (c d^2+a e^2\right )^3}-\frac{\left (c e^2\right ) \int \frac{-d+e x^n}{\left (a+c x^{2 n}\right )^2} \, dx}{\left (c d^2+a e^2\right )^2}-\frac{c \int \frac{-d+e x^n}{\left (a+c x^{2 n}\right )^3} \, dx}{c d^2+a e^2}\\ &=\frac{c x \left (d-e x^n\right )}{4 a \left (c d^2+a e^2\right ) n \left (a+c x^{2 n}\right )^2}+\frac{c e^2 x \left (d-e x^n\right )}{2 a \left (c d^2+a e^2\right )^2 n \left (a+c x^{2 n}\right )}+\frac{e^6 x \, _2F_1\left (1,\frac{1}{n};1+\frac{1}{n};-\frac{e x^n}{d}\right )}{d \left (c d^2+a e^2\right )^3}+\frac{\left (c d e^4\right ) \int \frac{1}{a+c x^{2 n}} \, dx}{\left (c d^2+a e^2\right )^3}-\frac{\left (c e^5\right ) \int \frac{x^n}{a+c x^{2 n}} \, dx}{\left (c d^2+a e^2\right )^3}+\frac{\left (c e^2\right ) \int \frac{-d (1-2 n)+e (1-n) x^n}{a+c x^{2 n}} \, dx}{2 a \left (c d^2+a e^2\right )^2 n}+\frac{c \int \frac{-d (1-4 n)+e (1-3 n) x^n}{\left (a+c x^{2 n}\right )^2} \, dx}{4 a \left (c d^2+a e^2\right ) n}\\ &=\frac{c x \left (d-e x^n\right )}{4 a \left (c d^2+a e^2\right ) n \left (a+c x^{2 n}\right )^2}+\frac{c e^2 x \left (d-e x^n\right )}{2 a \left (c d^2+a e^2\right )^2 n \left (a+c x^{2 n}\right )}-\frac{c x \left (d (1-4 n)-e (1-3 n) x^n\right )}{8 a^2 \left (c d^2+a e^2\right ) n^2 \left (a+c x^{2 n}\right )}+\frac{c d e^4 x \, _2F_1\left (1,\frac{1}{2 n};\frac{1}{2} \left (2+\frac{1}{n}\right );-\frac{c x^{2 n}}{a}\right )}{a \left (c d^2+a e^2\right )^3}+\frac{e^6 x \, _2F_1\left (1,\frac{1}{n};1+\frac{1}{n};-\frac{e x^n}{d}\right )}{d \left (c d^2+a e^2\right )^3}-\frac{c e^5 x^{1+n} \, _2F_1\left (1,\frac{1+n}{2 n};\frac{1}{2} \left (3+\frac{1}{n}\right );-\frac{c x^{2 n}}{a}\right )}{a \left (c d^2+a e^2\right )^3 (1+n)}-\frac{c \int \frac{-d (1-4 n) (1-2 n)+e (1-3 n) (1-n) x^n}{a+c x^{2 n}} \, dx}{8 a^2 \left (c d^2+a e^2\right ) n^2}-\frac{\left (c d e^2 (1-2 n)\right ) \int \frac{1}{a+c x^{2 n}} \, dx}{2 a \left (c d^2+a e^2\right )^2 n}+\frac{\left (c e^3 (1-n)\right ) \int \frac{x^n}{a+c x^{2 n}} \, dx}{2 a \left (c d^2+a e^2\right )^2 n}\\ &=\frac{c x \left (d-e x^n\right )}{4 a \left (c d^2+a e^2\right ) n \left (a+c x^{2 n}\right )^2}+\frac{c e^2 x \left (d-e x^n\right )}{2 a \left (c d^2+a e^2\right )^2 n \left (a+c x^{2 n}\right )}-\frac{c x \left (d (1-4 n)-e (1-3 n) x^n\right )}{8 a^2 \left (c d^2+a e^2\right ) n^2 \left (a+c x^{2 n}\right )}+\frac{c d e^4 x \, _2F_1\left (1,\frac{1}{2 n};\frac{1}{2} \left (2+\frac{1}{n}\right );-\frac{c x^{2 n}}{a}\right )}{a \left (c d^2+a e^2\right )^3}-\frac{c d e^2 (1-2 n) x \, _2F_1\left (1,\frac{1}{2 n};\frac{1}{2} \left (2+\frac{1}{n}\right );-\frac{c x^{2 n}}{a}\right )}{2 a^2 \left (c d^2+a e^2\right )^2 n}+\frac{e^6 x \, _2F_1\left (1,\frac{1}{n};1+\frac{1}{n};-\frac{e x^n}{d}\right )}{d \left (c d^2+a e^2\right )^3}-\frac{c e^5 x^{1+n} \, _2F_1\left (1,\frac{1+n}{2 n};\frac{1}{2} \left (3+\frac{1}{n}\right );-\frac{c x^{2 n}}{a}\right )}{a \left (c d^2+a e^2\right )^3 (1+n)}+\frac{c e^3 (1-n) x^{1+n} \, _2F_1\left (1,\frac{1+n}{2 n};\frac{1}{2} \left (3+\frac{1}{n}\right );-\frac{c x^{2 n}}{a}\right )}{2 a^2 \left (c d^2+a e^2\right )^2 n (1+n)}+\frac{(c d (1-4 n) (1-2 n)) \int \frac{1}{a+c x^{2 n}} \, dx}{8 a^2 \left (c d^2+a e^2\right ) n^2}-\frac{(c e (1-3 n) (1-n)) \int \frac{x^n}{a+c x^{2 n}} \, dx}{8 a^2 \left (c d^2+a e^2\right ) n^2}\\ &=\frac{c x \left (d-e x^n\right )}{4 a \left (c d^2+a e^2\right ) n \left (a+c x^{2 n}\right )^2}+\frac{c e^2 x \left (d-e x^n\right )}{2 a \left (c d^2+a e^2\right )^2 n \left (a+c x^{2 n}\right )}-\frac{c x \left (d (1-4 n)-e (1-3 n) x^n\right )}{8 a^2 \left (c d^2+a e^2\right ) n^2 \left (a+c x^{2 n}\right )}+\frac{c d e^4 x \, _2F_1\left (1,\frac{1}{2 n};\frac{1}{2} \left (2+\frac{1}{n}\right );-\frac{c x^{2 n}}{a}\right )}{a \left (c d^2+a e^2\right )^3}+\frac{c d (1-4 n) (1-2 n) x \, _2F_1\left (1,\frac{1}{2 n};\frac{1}{2} \left (2+\frac{1}{n}\right );-\frac{c x^{2 n}}{a}\right )}{8 a^3 \left (c d^2+a e^2\right ) n^2}-\frac{c d e^2 (1-2 n) x \, _2F_1\left (1,\frac{1}{2 n};\frac{1}{2} \left (2+\frac{1}{n}\right );-\frac{c x^{2 n}}{a}\right )}{2 a^2 \left (c d^2+a e^2\right )^2 n}+\frac{e^6 x \, _2F_1\left (1,\frac{1}{n};1+\frac{1}{n};-\frac{e x^n}{d}\right )}{d \left (c d^2+a e^2\right )^3}-\frac{c e^5 x^{1+n} \, _2F_1\left (1,\frac{1+n}{2 n};\frac{1}{2} \left (3+\frac{1}{n}\right );-\frac{c x^{2 n}}{a}\right )}{a \left (c d^2+a e^2\right )^3 (1+n)}-\frac{c e (1-3 n) (1-n) x^{1+n} \, _2F_1\left (1,\frac{1+n}{2 n};\frac{1}{2} \left (3+\frac{1}{n}\right );-\frac{c x^{2 n}}{a}\right )}{8 a^3 \left (c d^2+a e^2\right ) n^2 (1+n)}+\frac{c e^3 (1-n) x^{1+n} \, _2F_1\left (1,\frac{1+n}{2 n};\frac{1}{2} \left (3+\frac{1}{n}\right );-\frac{c x^{2 n}}{a}\right )}{2 a^2 \left (c d^2+a e^2\right )^2 n (1+n)}\\ \end{align*}

Mathematica [A]  time = 0.464, size = 346, normalized size = 0.59 \[ \frac{x \left (-\frac{c e^3 x^n \left (a e^2+c d^2\right ) \, _2F_1\left (2,\frac{n+1}{2 n};\frac{1}{2} \left (3+\frac{1}{n}\right );-\frac{c x^{2 n}}{a}\right )}{a^2 (n+1)}-\frac{c e x^n \left (a e^2+c d^2\right )^2 \, _2F_1\left (3,\frac{n+1}{2 n};\frac{1}{2} \left (3+\frac{1}{n}\right );-\frac{c x^{2 n}}{a}\right )}{a^3 (n+1)}+\frac{c d e^2 \left (a e^2+c d^2\right ) \, _2F_1\left (2,\frac{1}{2 n};\frac{1}{2} \left (2+\frac{1}{n}\right );-\frac{c x^{2 n}}{a}\right )}{a^2}+\frac{c d \left (a e^2+c d^2\right )^2 \, _2F_1\left (3,\frac{1}{2 n};\frac{1}{2} \left (2+\frac{1}{n}\right );-\frac{c x^{2 n}}{a}\right )}{a^3}+\frac{c d e^4 \, _2F_1\left (1,\frac{1}{2 n};\frac{1}{2} \left (2+\frac{1}{n}\right );-\frac{c x^{2 n}}{a}\right )}{a}-\frac{c e^5 x^n \, _2F_1\left (1,\frac{n+1}{2 n};\frac{1}{2} \left (3+\frac{1}{n}\right );-\frac{c x^{2 n}}{a}\right )}{a (n+1)}+\frac{e^6 \, _2F_1\left (1,\frac{1}{n};1+\frac{1}{n};-\frac{e x^n}{d}\right )}{d}\right )}{\left (a e^2+c d^2\right )^3} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((d + e*x^n)*(a + c*x^(2*n))^3),x]

[Out]

(x*((c*d*e^4*Hypergeometric2F1[1, 1/(2*n), (2 + n^(-1))/2, -((c*x^(2*n))/a)])/a + (e^6*Hypergeometric2F1[1, n^
(-1), 1 + n^(-1), -((e*x^n)/d)])/d - (c*e^5*x^n*Hypergeometric2F1[1, (1 + n)/(2*n), (3 + n^(-1))/2, -((c*x^(2*
n))/a)])/(a*(1 + n)) + (c*d*e^2*(c*d^2 + a*e^2)*Hypergeometric2F1[2, 1/(2*n), (2 + n^(-1))/2, -((c*x^(2*n))/a)
])/a^2 - (c*e^3*(c*d^2 + a*e^2)*x^n*Hypergeometric2F1[2, (1 + n)/(2*n), (3 + n^(-1))/2, -((c*x^(2*n))/a)])/(a^
2*(1 + n)) + (c*d*(c*d^2 + a*e^2)^2*Hypergeometric2F1[3, 1/(2*n), (2 + n^(-1))/2, -((c*x^(2*n))/a)])/a^3 - (c*
e*(c*d^2 + a*e^2)^2*x^n*Hypergeometric2F1[3, (1 + n)/(2*n), (3 + n^(-1))/2, -((c*x^(2*n))/a)])/(a^3*(1 + n))))
/(c*d^2 + a*e^2)^3

________________________________________________________________________________________

Maple [F]  time = 0.17, size = 0, normalized size = 0. \begin{align*} \int{\frac{1}{ \left ( d+e{x}^{n} \right ) \left ( a+c{x}^{2\,n} \right ) ^{3}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(d+e*x^n)/(a+c*x^(2*n))^3,x)

[Out]

int(1/(d+e*x^n)/(a+c*x^(2*n))^3,x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} e^{6} \int \frac{1}{c^{3} d^{7} + 3 \, a c^{2} d^{5} e^{2} + 3 \, a^{2} c d^{3} e^{4} + a^{3} d e^{6} +{\left (c^{3} d^{6} e + 3 \, a c^{2} d^{4} e^{3} + 3 \, a^{2} c d^{2} e^{5} + a^{3} e^{7}\right )} x^{n}}\,{d x} - \frac{{\left (a c^{2} e^{3}{\left (7 \, n - 1\right )} + c^{3} d^{2} e{\left (3 \, n - 1\right )}\right )} x x^{3 \, n} -{\left (a c^{2} d e^{2}{\left (8 \, n - 1\right )} + c^{3} d^{3}{\left (4 \, n - 1\right )}\right )} x x^{2 \, n} +{\left (a^{2} c e^{3}{\left (9 \, n - 1\right )} + a c^{2} d^{2} e{\left (5 \, n - 1\right )}\right )} x x^{n} -{\left (a^{2} c d e^{2}{\left (10 \, n - 1\right )} + a c^{2} d^{3}{\left (6 \, n - 1\right )}\right )} x}{8 \,{\left (a^{4} c^{2} d^{4} n^{2} + 2 \, a^{5} c d^{2} e^{2} n^{2} + a^{6} e^{4} n^{2} +{\left (a^{2} c^{4} d^{4} n^{2} + 2 \, a^{3} c^{3} d^{2} e^{2} n^{2} + a^{4} c^{2} e^{4} n^{2}\right )} x^{4 \, n} + 2 \,{\left (a^{3} c^{3} d^{4} n^{2} + 2 \, a^{4} c^{2} d^{2} e^{2} n^{2} + a^{5} c e^{4} n^{2}\right )} x^{2 \, n}\right )}} - \int -\frac{{\left (8 \, n^{2} - 6 \, n + 1\right )} c^{3} d^{5} + 2 \,{\left (12 \, n^{2} - 8 \, n + 1\right )} a c^{2} d^{3} e^{2} +{\left (24 \, n^{2} - 10 \, n + 1\right )} a^{2} c d e^{4} -{\left ({\left (3 \, n^{2} - 4 \, n + 1\right )} c^{3} d^{4} e + 2 \,{\left (5 \, n^{2} - 6 \, n + 1\right )} a c^{2} d^{2} e^{3} +{\left (15 \, n^{2} - 8 \, n + 1\right )} a^{2} c e^{5}\right )} x^{n}}{8 \,{\left (a^{3} c^{3} d^{6} n^{2} + 3 \, a^{4} c^{2} d^{4} e^{2} n^{2} + 3 \, a^{5} c d^{2} e^{4} n^{2} + a^{6} e^{6} n^{2} +{\left (a^{2} c^{4} d^{6} n^{2} + 3 \, a^{3} c^{3} d^{4} e^{2} n^{2} + 3 \, a^{4} c^{2} d^{2} e^{4} n^{2} + a^{5} c e^{6} n^{2}\right )} x^{2 \, n}\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(d+e*x^n)/(a+c*x^(2*n))^3,x, algorithm="maxima")

[Out]

e^6*integrate(1/(c^3*d^7 + 3*a*c^2*d^5*e^2 + 3*a^2*c*d^3*e^4 + a^3*d*e^6 + (c^3*d^6*e + 3*a*c^2*d^4*e^3 + 3*a^
2*c*d^2*e^5 + a^3*e^7)*x^n), x) - 1/8*((a*c^2*e^3*(7*n - 1) + c^3*d^2*e*(3*n - 1))*x*x^(3*n) - (a*c^2*d*e^2*(8
*n - 1) + c^3*d^3*(4*n - 1))*x*x^(2*n) + (a^2*c*e^3*(9*n - 1) + a*c^2*d^2*e*(5*n - 1))*x*x^n - (a^2*c*d*e^2*(1
0*n - 1) + a*c^2*d^3*(6*n - 1))*x)/(a^4*c^2*d^4*n^2 + 2*a^5*c*d^2*e^2*n^2 + a^6*e^4*n^2 + (a^2*c^4*d^4*n^2 + 2
*a^3*c^3*d^2*e^2*n^2 + a^4*c^2*e^4*n^2)*x^(4*n) + 2*(a^3*c^3*d^4*n^2 + 2*a^4*c^2*d^2*e^2*n^2 + a^5*c*e^4*n^2)*
x^(2*n)) - integrate(-1/8*((8*n^2 - 6*n + 1)*c^3*d^5 + 2*(12*n^2 - 8*n + 1)*a*c^2*d^3*e^2 + (24*n^2 - 10*n + 1
)*a^2*c*d*e^4 - ((3*n^2 - 4*n + 1)*c^3*d^4*e + 2*(5*n^2 - 6*n + 1)*a*c^2*d^2*e^3 + (15*n^2 - 8*n + 1)*a^2*c*e^
5)*x^n)/(a^3*c^3*d^6*n^2 + 3*a^4*c^2*d^4*e^2*n^2 + 3*a^5*c*d^2*e^4*n^2 + a^6*e^6*n^2 + (a^2*c^4*d^6*n^2 + 3*a^
3*c^3*d^4*e^2*n^2 + 3*a^4*c^2*d^2*e^4*n^2 + a^5*c*e^6*n^2)*x^(2*n)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{1}{a^{3} e x^{n} + a^{3} d +{\left (c^{3} e x^{n} + c^{3} d\right )} x^{6 \, n} + 3 \,{\left (a c^{2} e x^{n} + a c^{2} d\right )} x^{4 \, n} + 3 \,{\left (a^{2} c e x^{n} + a^{2} c d\right )} x^{2 \, n}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(d+e*x^n)/(a+c*x^(2*n))^3,x, algorithm="fricas")

[Out]

integral(1/(a^3*e*x^n + a^3*d + (c^3*e*x^n + c^3*d)*x^(6*n) + 3*(a*c^2*e*x^n + a*c^2*d)*x^(4*n) + 3*(a^2*c*e*x
^n + a^2*c*d)*x^(2*n)), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(d+e*x**n)/(a+c*x**(2*n))**3,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (c x^{2 \, n} + a\right )}^{3}{\left (e x^{n} + d\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(d+e*x^n)/(a+c*x^(2*n))^3,x, algorithm="giac")

[Out]

integrate(1/((c*x^(2*n) + a)^3*(e*x^n + d)), x)